A conserved oomycete CRN effector targets and modulates tomato TCP14-2 to enhance virulence

نویسندگان

  • Remco Stam
  • Graham B. Motion
  • Petra C. Boevink
  • Edgar Huitema
  • James Hutton
چکیده

Phytophthora spp. secrete vast arrays of effector molecules upon infection. A main class of intracellular effectors are the CRNs. They are translocated into the host cell and specifically localise to the nucleus where they are thought to perturb many different cellular processes. Although CRN proteins have been implicated as effectors, direct evidence of CRN mediated perturbation of host processes has been lacking. Here we show that a conserved CRN effector from P. capsici directly binds to tomato transcription factor SlTCP14-2. Previous studies in Arabidopsis thaliana have revealed that transcription factor TCP14 may be key immune signalling protein, targeted by effectors from divergent species. We extend on our understanding of TCP targeting by pathogen effectors by showing that the P. capsici effector CRN12_997 binds to SlTCP14-2 in plants. SlTCP14-2 over-expression enhances immunity to P. capsici, a phenotypic outcome that can be abolished by co-expression of CRN12_997. We show that in the presence of CRN12_997, SlTCP14-2 association with nuclear chromatin is diminished, resulting in altered SlTCP14 subnuclear localisation. These results suggest that CRN12_997 prevents SlTCP14 from positively regulating defence against P. capsici. Our work demonstrates a direct interaction between an oomycete CRN and a host target required for suppression of immunity. Collectively, our results hint at a virulence strategy that is conserved within the oomycetes and may allow engineering of resistance to a wide range of crop pathogens. . CC-BY-NC-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/001248 doi: bioRxiv preprint first posted online Dec. 11, 2013;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence.

Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic aci...

متن کامل

Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity

Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates....

متن کامل

An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters

Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae vir...

متن کامل

Structure–function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune‐suppressing activity from recognition

Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full viru...

متن کامل

The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner.

A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013